The Chi-Square Distribution

Goodness-of-Fit Test, Test of Independence, Test for Homogeneity

Noara Razzak May 9, 2020

The Chi-Square Distribution

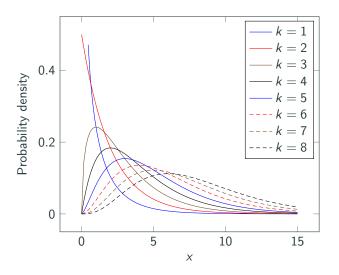
The Chi-Square Distribution (χ^2) is a continuous probability distribution that arises in statistical hypothesis testing, particularly in tests of goodness-of-fit, independence, and homogeneity.

- It is defined for positive real numbers and is skewed to the right.
- Its shape depends on the degrees of freedom (k). As k increases, the distribution becomes more symmetric.
- If Z_1, Z_2, \dots, Z_k are independent standard normal random variables, then:

$$Q = \sum_{i=1}^k Z_i^2 \sim \chi^2(k)$$

where Q follows a chi-square distribution with k degrees of freedom.

Chi-Square Distribution



Chi-Square Goodness-of-Fit Test

The Goodness-of-Fit Test determines whether a sample matches a population with a specific distribution.

Hypotheses

- H_0 : The sample follows the specified distribution.
- H_1 : The sample does not follow the specified distribution.

Test Statistic

The test statistic is given by:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

where:

- O_i = Observed frequency in category i
- E_i = Expected frequency in category i under H_0
- n = Number of categories

Decision Rule Reject H_0 if $\chi^2 > \chi^2_{\alpha,df}$, where df = n - 1 – number of estimated parameters.

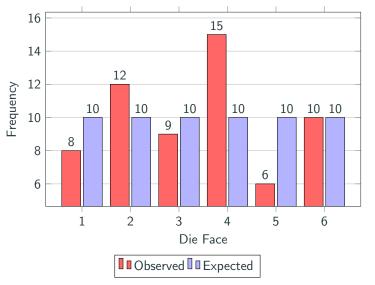
Example 1

Fairness of a Die: A casino wants to test if a six-sided die is fair (i.e., each face has an equal probability of landing face up). The die is rolled 60 times, and the observed frequencies are recorded:

Table 1: Observed vs. Expected Frequencies

Face	1	2	3	4	5	6
Observed (O_i)	8	12	9	15	6	10
Expected (E_i)	10	10	10	10	10	10

Goodness-of-Fit Test: Observed vs Expected Frequencies



1: State Hypotheses

- H_0 : The die is fair (each face has probability 1/6).
- H_1 : The die is not fair (at least one face has a different probability).

2: Calculate the Test Statistic

The chi-square statistic is:

$$\chi^2 = \sum_{i=1}^6 \frac{(O_i - E_i)^2}{E_i}$$

$$\chi^{2} = \frac{(8-10)^{2}}{10} + \frac{(12-10)^{2}}{10} + \frac{(9-10)^{2}}{10} + \frac{(15-10)^{2}}{10} + \frac{(6-10)^{2}}{10} + \frac{(10-10)^{2}}{10}$$
$$\chi^{2} = \frac{4}{10} + \frac{4}{10} + \frac{1}{10} + \frac{25}{10} + \frac{16}{10} + \frac{0}{10} = 0.4 + 0.4 + 0.1 + 2.5 + 1.6 + 0 = 5.0$$

3: Determine Degrees of Freedom

$$df = k - 1 = 6 - 1 = 5$$

where k is the number of categories (faces).

4: Compare to Critical Value At $\alpha=0.05$ and df=5, the critical value from the chi-square table is:

$$\chi^2_{0.05,5} = 11.07$$

Since our calculated $\chi^2 = 5.0 < 11.07$, we **fail to reject** H_0 .

Conclusion There is **insufficient evidence** to conclude that the die is unfair at the 5% significance level.

Chi-Square Test of Independence

The Test of Independence assesses whether two categorical variables are independent.

Hypotheses

- H_0 : The two variables are independent.
- H_1 : The two variables are dependent.

Test Statistic

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

where:

- O_{ij} = Observed frequency in cell (i,j)
- $E_{ij} = \frac{(\text{Row } i \text{ Total}) \times (\text{Column } j \text{ Total})}{\text{Grand Total}}$
- r = Number of rows, c = Number of columns

Degrees of Freedom

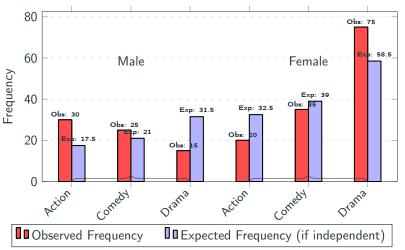
$$df = (r-1)(c-1)$$

Example 2

Gender vs. Movie Preference: A survey asks 200 people about their gender and preferred movie genre. Test whether gender and movie preference are independent ($\alpha = 0.05$).

 Table 2: Observed Frequencies

	Action	Comedy	Drama	Total
Male	30	25	15	70
Female	20	35	75	130
Total	50	60	90	200



1: State Hypotheses

- *H*₀: Gender and movie preference are independent
- *H*₁: Gender and movie preference are dependent

2: Calculate Expected Frequencies

For each cell:
$$E_{ij} = \frac{(\text{Row Total}) \times (\text{Column Total})}{\text{Grand Total}}$$

Table 3: Expected Frequencies

	Action	Comedy	Drama
Male	$\frac{70 \times 50}{200} = 17.5$ $\frac{130 \times 50}{200} = 32.5$	$\frac{70 \times 60}{200} = 21$ $\frac{130 \times 60}{200} = 39$	$\frac{70 \times 90}{200} = 31.5$ $\frac{130 \times 90}{200} = 58.5$
Female	$\frac{130 \times 50}{200} = 32.5$	$\frac{130 \times 60}{200} = 39$	$\frac{130 \times 90}{200} = 58.5$

3: Compute Chi-Square Statistic

$$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{(30-17.5)^2}{17.5} + \frac{(25-21)^2}{21} + \dots + \frac{(75-58.5)^2}{58.5} = 28.42$$

4: Determine Critical Value Degrees of freedom:

$$df = (r-1)(c-1) = (2-1)(3-1) = 2$$

Critical value: $\chi^2_{0.05,2} = 5.991$

5: Conclusion Since 28.42 > 5.991, we reject H_0 . There is significant evidence that gender and movie preference are associated.

Chi-Square Test for Homogeneity The test for Homogeneity checks whether different populations have the same distribution of a categorical variable.

Hypotheses

- H_0 : The distributions are the same across populations.
- H_1 : The distributions differ across populations.

Test Statistic

The test for Homogeneity is the same as the test of Independence:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

where:

- O_{ij} = Observed frequency for population i and category j
- E_{ij} = Expected frequency under homogeneity

Degrees of Freedom

$$df = (r-1)(c-1)$$

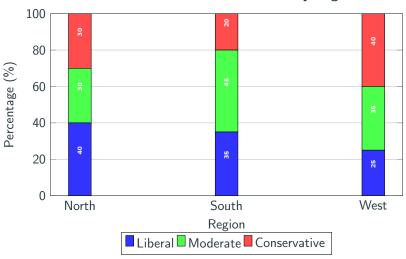
Note: The test of Independence and test for Homogeneity use the same formula but differ in their hypotheses and sampling design.

Example 3

Political Preference Across Regions: A researcher wants to test if the distribution of political preferences (Liberal, Moderate, Conservative) is the same across three regions (North, South, West). Data from 300 respondents:

 Table 4: Observed Frequencies

	Liberal	Moderate	Conservative
North	40	30	30
South	35	45	20
West	25	35	40



1: State Hypotheses

- H_0 : The distribution of political views is *homogeneous* across regions
- H₁: At least one region has a different distribution

2: Calculate Expected Frequencies

For each cell:
$$E_{ij} = \frac{(\text{Row Total}) \times (\text{Column Total})}{\text{Grand Total}}$$

Table 5: Expected Frequencies (if homogeneous)

	Liberal	Moderate	Conservative
North	$\frac{100 \times 100}{300} = 33.3$	$\frac{100 \times 110}{300} = 36.7$	$\frac{100 \times 90}{300} = 30$
South	$\frac{100\times100}{300} = 33.3$	$\frac{100\times110}{300}=36.7$	$\frac{100\times90}{300}=30$
West	$\frac{100 \times 100}{300} = 33.3$	$\frac{100 \times 110}{300} = 36.7$	$\frac{100 \times 90}{300} = 30$

3: Compute Test Statistic

$$\chi^2 = \sum \frac{(O-E)^2}{E} = \frac{(40-33.3)^2}{33.3} + \dots + \frac{(40-30)^2}{30} = 13.36$$

4: Determine Critical Value Degrees of freedom:

$$df = (r-1)(c-1) = (3-1)(3-1) = 4$$

Critical value ($\alpha = 0.05$): $\chi^2_{0.05,4} = 9.488$

5: Conclusion Since 13.36 > 9.488, we reject H_0 . The distribution of political views differs significantly across regions.

Table 6: Comparison of Goodness-of-Fit, Test of Independence, and Test for Homogeneity

Feature	Goodness-of-Fit Test	Test of Independence	Test for Homogeneity
Purpose	Checks if sample data fits a the- oretical distribu- tion	Determines if two categorical variables are independent	Checks if different populations have the same distribution for a categorical variable
Data Structure	One categorical variable with observed vs. expected frequencies	Two categorical variables in a contingency table	One categorical variable compared across multiple populations

Table 6: Comparison of Goodness-of-Fit, Test of Independence, and Test for Homogeneity

Feature	Goodness-of-Fit Test	Test of Independence	Test for Homogeneity
Null Hypothesis (H ₀)	The observed distribution matches the expected distribution	The two variables are independent	The distribu- tions are the same across different popu- lations
Sample Requirements	One sample, one variable	One sample, two variables	Multiple sam- ples, one variable

Table 6: Comparison of Goodness-of-Fit, Test of Independence, and Test for Homogeneity

Feature	Goodness-of-Fit Test	Test of Independence	Test for Homogeneity
Degrees of Free- dom	`	$(r-1)(c-1)$ (for an $r \times c$ table)	, , ,
Chi-Square Statistic	$\frac{\chi^2}{\sum \frac{(O_i - E_i)^2}{E_i}} =$	$\frac{\chi^2}{\sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}} =$	Same formula as Test of Indepen- dence

Next class we will cover F Distribution and One-Way ANOVA, Facts About the F Distribution, Test of Two Variances