Expectation and Variance

Discrete Random Variables

Noara Razzak

May 2, 2020

What is a Random variable?

A random variable is a bridge (function) between real-world randomness and numbers. It lets us:

- Model uncertainty (e.g., "Will it rain?" $\to X = 1$ if yes, 0 if no).
- Mathematically explain daily randomness (e.g., "What's the average wait time?").

Real-World Analogies

Random Variable	Real-World Meaning
X: "Roll of a die"Y: "Daily stock price change"	Outcome of a game move Profit/loss from investing
Z: "Height of a random person"	Variability in a population

Common Misconceptions of Random Variables

- "It's just a variable": No, it's a function that assigns numbers to outcomes.
- "It's always unknown": We often know its possible values and probabilities (e.g., a fair die).
- "It's the same as probability": Probability describes random variables; it's not the variable itself.

Expectation of a random variable

- The mean, expected value, or expectation of a random variable X is written as E(X) or μ_X .
- If we observe N random values of X, then the mean of the N values will be approximately equal to E(X) for large N.
- The expectation is defined differently for continuous and discrete random variables

Expectation of X

Definition: Let X be a discrete random variable with probability function $f_X(x)$. The expected value of X is:

$$E(X) = \sum_{x} x.f_{x}(x) = \sum_{x} x.P(X = x).$$

- Here $f_x(x)$ is the probability mass function.
- It is a function that gives the probability that a discrete random variable is exactly equal to some value.

Expectation of g(X)

Definition: Let X be a discrete random variable, and let g be a function. The expected value of g(X) is:

$$E(g(X)) = \sum_{x} g(X).f_{x}(x) = \sum_{x} g(X).P(X = x).$$

So is there an intuitive way to understand Expectation of a Random Variable?

- Expectation is the average value over many repetitions.
- It's the balance point of the distribution.
- It gives the fair price in a betting scenario.
- It's the best constant predictor under squared loss.

Careful! It doesn't always represent the most likely outcome!

Expectation For a data set x_1, x_2, \ldots, x_n , the mean is:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Example 1

Suppose we have a six-sided die marked with five 3's and one 6. What would you expect the average of 6000 rolls to be? What will be the variance?

Example 1- Solution

- Notice that throwing a die is a completely random process, so we are dealing with a random variable.
- Since there are five 3's and one six we expect roughly 5/6 of the rolls will give 3 and 1/6 will give 6. Assuming this to be exactly true, we have the following table of values and counts:

value	3	6
count	5000	100
	6000	600

Example 1- Solution

Therefore there will be 5000/6000 probability that the die will give 3 and 1000/6000 probability that the die will give 6.

$$E(X) = \sum_{x} x.f_{x}(x) = \frac{5000}{6000}.3 + \frac{1000}{6000}.6 = 3.5$$

Example 2

We roll two standard 6-sided dice. You win Taka 1000 if the sum is 2 and lose Taka 100 otherwise. How much do you expect to win on average per trial? What will be the variance?

Example 2-Solution

- Notice that you are tossing two die. Therefore, there are 36 total outcomes.
- Sum of the outcomes can be numbers between 2 and 36.
- There is only one outcome where the number is 2. Each dice can give 1 only once.

Example 2 -Solution

Suppose you try tossing the two die N number of times. The outcome will be 2 about $\frac{N}{36}$ of the times and other than 2 about $\frac{35.N}{36}$ of the times.

value 1000 100 count
$$\frac{N}{36}$$
 $\frac{35.N}{36}$

Therefore Expected Average:

$$E(X) = \sum_{x} x.f_{x}(x) = \left(\frac{N}{36}.1000 - \frac{35.N}{36}.100\right).\frac{1}{N} = -69.44$$

Example 3

Flip a fair coin two times. Let X be the number of heads. Find the average number of heads in the coin toss. What will be the variance?

Example 3 - Solution

- Notice that we have four outcomes- {HH, HT,TH, TT}
- Total number of outcomes is 4.

value 2H 1H 0H count
$$\frac{1}{4}$$
 $\frac{2}{4}$ $\frac{1}{4}$

Example 3- Solution

$$E(X) = \sum_{x} x.f_{x}(x) = 2.\frac{1}{4} + 1.\frac{2}{4} + 0.\frac{1}{4} = 1$$

- The variance is the mean squared deviation of a random variable from its own mean.
- If X has high variance, we can observe values of X a long way from the mean.
- If X has low variance, the values of X tend to be clustered tightly around the mean value.

Variance (σ^2) measures how far a set of numbers are spread out from their mean value.

Definition: Let X be any discrete random variable with mean μ . The variance of X is:

$$Var(X) = \sum_{x} (x - \mu)^{2} f_{x}(x)$$

$$= E(X - \mu)^{2}$$

$$= E \left[X^{2} - 2 \cdot X \cdot \mu + (\mu)^{2} \right]$$

$$= E(X^{2}) - 2 \cdot E(X) \cdot \mu + E(\mu^{2})$$

$$= E(X^{2}) - 2 \cdot \mu \cdot \mu + \mu^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

Example 1 - Solution Continued

Now we will find the variance.

$$Var(X) = \sum_{x} (x - \mu)^{2} f_{x}(x)$$

$$= (3 - 3.5)^{2} \cdot \frac{5000}{6000} + (6 - 3.5)^{2} \cdot \frac{1000}{6000}$$

$$= 1.25$$

Example 2 - Solution Continued

$$Var(X) = \sum_{x} (x - \mu)^{2} f_{x}(x)$$

$$= (1000 + 69.44)^{2} \cdot \frac{1}{36} - (100 + 69.44)^{2} \cdot \frac{35}{36}$$

$$= 2239.30$$

Example 3 - Solution Continued

$$Var(X) = \sum_{x} (x - \mu)^{2} f_{x}(x)$$

$$= (2 - 1)^{2} \cdot \frac{1}{4} + (1 - 1)^{2} \cdot \frac{1}{2} + (0 - 1)^{2} \cdot \frac{1}{4}$$

$$= \frac{1}{2}$$

Expected Value

- Synonyms: Average or Mean
- Notation: E(X), μ
- Definition: $\sum_{x} x.f_{x}(x)$
- Scale and Shift: E(aX + b) = aE(X) + b
- Additive Property: E(X + Y) = E(X) + E(Y) for any r.v X and Y or their functions.
- Multiplicative Property: $E(XY) = E(X) \cdot E(Y)$ for independent any r.v X and Y or their functions.

- Synonyms: Distance from Mean
- Notation: Var(X)
- Definition: $\sum_{x} (x \mu)^2 f_x(x)$
- Scale and Shift: $Var(aX + b) = a^2 \cdot Var(X)$
- Additive Property 1: Var(X + Y) = Var(X) + Var(Y) if X and Y are independent r.v.s
- Additive Property 2: Var(X + Y) = Var(X) + Var(Y) 2Cov(X, Y) if X and Y are not independent r.v.s where $Cov(X, Y) = E(XY) E(X) \cdot E(Y)$.

Next class we will discuss expectation and variance of random variables for continuous distributions.