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Basic Concepts - Review from last lecture

• Null Hypothesis (H0): Default assumption (e.g., µ = µ0)

• Alternative Hypothesis (H1): Counter-claim (e.g., µ ̸= µ0)

• Significance Level (α): Probability of Type I error (typically 0.05 but
we can also use 0.01)
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Types of Tests

Z-test (Known Variance)

Tn =
X̄n − µ0

σ/
√
n

∼ N(0, 1)

Student’s t-test (Unknown Variance)

Tn =
X̄n − µ0

s/
√
n

∼ tn−1
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Decision Rules

Test Type Rejection Region Condition

Two-tailed |Tn| > zα/2 H1 : µ ̸= µ0

Right-tailed Tn > zα H1 : µ > µ0

Left-tailed Tn < −zα H1 : µ < µ0

Error Types

{
Type I Error = P(Reject H0|H0 true) = α

Type II Error = P(Fail to reject H0|H1 true) = β
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Two Population Means with Unknown Standard Deviations

When comparing two independent population means where the
population standard deviations are unknown, we use the two-sample
(Welch) t-test.
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When to use:

• Used when there are two populations with mean µ1 and µ2 and
variances are unknown

• Welch’s t-test applied with different degrees of freedom

• The test examines whether µ1 = µ2 (null hypothesis)

• Sample sizes n1 and n2 respectively

• Sample means X̄1 and X̄2

• Sample standard deviations s1 and s2

• Assumptions: Normally distributed populations or large sample sizes
(CLT)
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Welch’s Test statistic

The test statistic is:

t =
(X̄1 − X̄2)− (µ1 − µ2)

sp
√

1
n1

+ 1
n2

(1)

Where sp is the pooled standard deviation:

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(2)

Under the null hypothesis (H0 : µ1 = µ2).
Degrees of freedom:

df = n1 + n2 − 2 (3)
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Visual Representation

Value

Density
Population 1

µ1

Population 2

µ2

∆µ = µ2 − µ1

s1 s2
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Example 1

A study is done by a community group in two neighboring colleges to
determine which one graduates students with more math classes. College
A samples 11 graduates. Their average is four math classes with a
standard deviation of 1.5 math classes. College B samples nine
graduates. Their average is 3.5 math classes with a standard deviation of
one math class. The community group believes that a student who
graduates from college A has taken more math classes, on the average.
Both populations have a normal distribution. Test at a 1% significance
level. Answer the following questions.
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Example 1

• Are the populations standard deviations known or unknown?

• Which distribution do you use to perform the test

• What is the random variable?

• What are the null and alternate hypotheses? Write the null and
alternate hypotheses in words and in symbols.

• Is this test right-, left-, or two-tailed?

• What is the p-value?

• Do you reject or not reject the null hypothesis?
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Solution

• Two means

• Unknown

• Student’s t- test

• X̄A − X̄B , it’s the difference between the number of math classes
from Colleges A and B respectively

• Ho : µA ≥ µB and HA : µA < µB

• It’s a right-tailed test with α = 0.01

• The p value is 0.1928

• Do not reject null hypothesis, since α = 0.01 < 0.1928.
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One-tailed test, with α = 0.01

Test Statistic

Density

Critical value0

Null distribution N(0, std)

Rejection region α = 0.01

p-value p = 0.1928

Acceptance region

More extreme values
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Two Population Means with Known Standard Deviations

When comparing two independent population means where the
population standard deviations are known, we use the two-sample z-test.
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When to use:

Given:

• Used when there are two populations with mean µ1 and µ2 and
variances are known

• The normal distribution is applied rather than the t-distribution

• The test examines whether µ1 = µ2 (null hypothesis)

• Sample sizes n1 and n2 respectively

• Sample means X̄1 and X̄2

• Population standard deviations known, σ1 and σ2

• Test statistic follows standard normal distribution N(0,1) under H0
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Test statistic

The test statistic is

z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

(4)

Under the null hypothesis (H0 : µ1 = µ2):

z =
X̄1 − X̄2√
σ2

1
n1

+
σ2

2
n2

(5)
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Visual Representation

Value

Density

Population 1

µ1

Population 2

µ2

σ1 (known) σ2 (known)

∆µ = µ2 − µ1
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Example 2

The mean lasting time of two competing floor waxes is to be compared.
Twenty floors are randomly assigned to test each wax. Both populations
have a normal distributions. The data are recorded in the following table:

Table 1: Comparison of Floor Wax Effectiveness

Component Wax 1 Wax 2

Sample Mean (X̄ ) 3.0 months 2.9 months
Population SD (σ) 0.33 0.36

Does the data indicate that wax 1 is more effective than wax 2? Test at
a 5% level of significance.
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Example 2

• Are the populations standard deviations known or unknown?

• Which distribution do you use to perform the test?

• What is the random variable?

• What are the null and alternate hypotheses? Write the null and
alternate hypotheses in words and in symbols.

• Is this test right-, left-, or two-tailed?

• What is the z- score and corresponding p-value?

• Do you reject or not reject the null hypothesis?
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Solution

• Two means

• Known

• Normal Distribution, X̄1 − X̄2 ∼ N

(
0,
√

0.332

20 + .0362

20

)
• X̄1 − X̄2, it’s the difference in the mean number of months the

competing floor waxes last.

• Ho : µ1 ≤ µ2 and HA : µ1 > µ2

• It’s a right-tailed test with α = 0.05
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• We need to text whetherX1 − X2 ≤ 0

• The test statistic is: X1−X2
σ = 0.1

0.1092 = 0.915

• The corresponding p-value is 0.1801

• Do not reject null hypothesis, because α = 0.05 < 0.1801.
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One-tailed test, with α = 0.05

Test Statistic

Density

Critical value0

Null distribution N(0, std)

Rejection region α = 0.05

p-value p = 0.1801

Acceptance region

More extreme values
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Next class we will cover The Chi-Square Distribution,
Goodness-of-Fit Test, Test of Independence, Test for Homogeneity
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